Category Archives: C++

What they don’t tell you about demand paging in school

This post details my adventures with the Linux virtual memory subsystem, and my discovery of a creative way to taunt the OOM (out of memory) killer by accumulating memory in the kernel, rather than in userspace.

Keep reading and you’ll learn:

  • Internal details of the Linux kernel’s demand paging implementation
  • How to exploit virtual memory to implement highly efficient sparse data structures
  • What page tables are and how to calculate the memory overhead incurred by them
  • A cute way to get killed by the OOM killer while appearing to consume very little memory (great for parties)
Continue reading

Don’t confuse std::move and std::forward

This was a pretty interesting buggy scenario I found while reading the clang-tidy checks. If you’re writing a function that takes a forwarding reference (what looks like an rvalue reference, but whose type is a template argument), you need to be careful to not call std::move on it. You need to make sure to call std::forward instead. Otherwise, you might accidentally trigger a move on an object passed by a caller! This would be confusing, since their object would be moved from, and they never explicitly called std::move on it.

Continue reading

Getting bit by unique_ptr

I got bit by unique_ptr when implementing a linked list today. You need to be careful to manually release() the unique_ptr before resetting or you might accidentally free the entire list. This comes up when doing insertions and stuff like that.

Being pedantic about C++ compilation


  • Don’t assume it’s safe to use pre-built dependencies when compiling C++ programs. You might want to build from source, especially if you can’t determine how a pre-built object was compiled, or if you want to use a different C++ standard than was used to compile it.
  • Ubuntu has public build logs which can help you determine if you can use a pre-built object, or if you should compile from source.
  • pkg-config¬†is useful for generating the flags needed to compile a complex third-party dependency. CMake’s¬†PkgConfig¬†module can make it easy to integrate a dep into your build system.
  • Use CMake¬†IMPORTED¬†targets (e.g.¬†BZip2::Bzip2) versus legacy variables (e.g.¬†BZIP2_INCLUDE_DIRS¬†and¬†BZIP2_LIBRARIES).
Continue reading