Category Archives: Linux

What they don’t tell you about demand paging in school

This post details my adventures with the Linux virtual memory subsystem, and my discovery of a creative way to taunt the OOM (out of memory) killer by accumulating memory in the kernel, rather than in userspace.

Keep reading and you’ll learn:

  • Internal details of the Linux kernel’s demand paging implementation
  • How to exploit virtual memory to implement highly efficient sparse data structures
  • What page tables are and how to calculate the memory overhead incurred by them
  • A cute way to get killed by the OOM killer while appearing to consume very little memory (great for parties)
Continue reading

Being pedantic about C++ compilation


  • Don’t assume it’s safe to use pre-built dependencies when compiling C++ programs. You might want to build from source, especially if you can’t determine how a pre-built object was compiled, or if you want to use a different C++ standard than was used to compile it.
  • Ubuntu has public build logs which can help you determine if you can use a pre-built object, or if you should compile from source.
  • pkg-config is useful for generating the flags needed to compile a complex third-party dependency. CMake’s PkgConfig module can make it easy to integrate a dep into your build system.
  • Use CMake IMPORTED targets (e.g. BZip2::Bzip2) versus legacy variables (e.g. BZIP2_INCLUDE_DIRS and BZIP2_LIBRARIES).
Continue reading

Let’s understand: setjmp()/longjmp()

Pretty recently I learned about setjmp() and longjmp(). They’re a neat pair of libc functions which allow you to save your program’s current execution context and resume it at an arbitrary point in the future (with some caveats1). If you’re wondering why this is particularly useful, to quote the manpage, one of their main use cases is “…for dealing with errors and interrupts encountered in a low-level subroutine of a program.” These functions can be used for more sophisticated error handling than simple error code return values.

I was curious how these functions worked, so I decided to take a look at musl libc’s implementation for x86. First, I’ll explain their interfaces and show an example usage program. Next, since this post isn’t aimed at the assembly wizard, I’ll cover some basics of x86 and Linux calling convention to provide some required background knowledge. Lastly, I’ll walk through the source, line by line.

Continue reading